论文标题
永恒的绝热性
Eternal Adiabaticity
论文作者
论文摘要
我们迭代地将最近配制的绝热定理应用于有限维量子系统中的强耦合极限。这使我们能够改善基于量子ZENO动力学和绝热消除的标准近似值的近似值。描述近似演变的有效发电机具有与发电机的未扰动部分相同的块结构,并表现出绝热的发展。这种迭代的绝热定理表明,绝热性永远存在,即,系统在发电机不受干扰部分的每个特征空间内演变,并在$ O(1/γ)$均匀地限制的误差时,$γ$表征了生成器的未扰动的一部分的强度。我们证明,迭代绝热定理在单一情况下再现了Bloch的扰动理论,因此是对开放系统的完全概括。我们进一步证明了在单一情况下的Schrieffer-Wolff和des cloiseaux方法的等效性,并将其推广到任意开放系统,表明它们具有永恒的绝热性,并提供明确的误差界限。最后,我们讨论了有效绝热发电机的物理结构,并表明通常不存在理想的开放系统有效发电机。
We iteratively apply a recently formulated adiabatic theorem for the strong-coupling limit in finite-dimensional quantum systems. This allows us to improve approximations to a perturbed dynamics, beyond the standard approximation based on quantum Zeno dynamics and adiabatic elimination. The effective generators describing the approximate evolutions are endowed with the same block structure as the unperturbed part of the generator, and exhibit adiabatic evolutions. This iterative adiabatic theorem reveals that adiabaticity holds eternally, that is, the system evolves within each eigenspace of the unperturbed part of the generator, with an error bounded by $O(1/γ)$ uniformly in time, where $γ$ characterizes the strength of the unperturbed part of the generator. We prove that the iterative adiabatic theorem reproduces Bloch's perturbation theory in the unitary case, and is therefore a full generalization to open systems. We furthermore prove the equivalence of the Schrieffer-Wolff and des Cloiseaux approaches in the unitary case and generalize both to arbitrary open systems, showing that they share the eternal adiabaticity, and providing explicit error bounds. Finally we discuss the physical structure of the effective adiabatic generators and show that ideal effective generators for open systems do not exist in general.