论文标题
Rarita-Schwinger理论在空间无穷大的四个时空维度中的渐近结构
Asymptotic structure of the Rarita-Schwinger theory in four spacetime dimensions at spatial infinity
论文作者
论文摘要
我们研究了汉密尔顿形式主义的空间无限的四个时空维度,研究了自由rarita-schwinger理论的渐近结构。我们施加了在非平凡渐近屈服对称性的无限二(Abelian)代数下不变的Spin-3/2场的边界条件。这组边界条件与洛伦兹理论的不变性的兼容性需要沿电磁界的线引入汉密尔顿动作中的边界自由度。这些边界的自由度通过除标准散装件外出现的表面贡献来改变符号结构。然后,庞加莱的转换已定义明确(可集成,有限的)规范发电机。此外,也是明确定义的规范转换的不当费米仪对称性,进一步扩大,并通过在无穷大的两个独立角度依赖性纺纱函数进行参数化,从而导致无限尺度的费米子代数赋予了中央电荷。接下来,我们将分析扩展到超对称性自旋 - $(1,3/2)$和旋转 - $(2,3/2)$多重。首先,我们介绍了旋转上的超峰代数的规范实现 - $(1,3/2)$多重,这被证明是由无限二维的Abelian代数始终增强的,具有角度依赖性的波体性波斯和费马克式不符号符号,并与rararirariata and rarariata anderagna candents and rarariate and rarariata and rarariata相关。然后,对旋转的类似分析 - $(2,3/2)进行了多重分类,以获得超级武器代数的规范实现,这始终通过亚伯利亚的旋转不当的旋转率变换(bms超级传播)和亚伯利亚不当的菲尔米菲尔米菲尔米昂菲尔德·菲尔德·菲尔德·$ 3/2 $ 3/2 $ 3/2 $ 3/2 $ 3/2 $ 3/2 $ 3/2.
We investigate the asymptotic structure of the free Rarita-Schwinger theory in four spacetime dimensions at spatial infinity in the Hamiltonian formalism. We impose boundary conditions for the spin-3/2 field that are invariant under an infinite-dimensional (abelian) algebra of non-trivial asymptotic fermionic symmetries. The compatibility of this set of boundary conditions with the invariance of the theory under Lorentz boosts requires the introduction of boundary degrees of freedom in the Hamiltonian action, along the lines of electromagnetism. These boundary degrees of freedom modify the symplectic structure by a surface contribution appearing in addition to the standard bulk piece. The Poincaré transformations have then well-defined (integrable, finite) canonical generators. Moreover, improper fermionic gauge symmetries, which are also well-defined canonical transformations, are further enlarged and turn out to be parametrized by two independent angle-dependent spinor functions at infinity, which lead to an infinite-dimensional fermionic algebra endowed with a central charge. We extend next the analysis to the supersymmetric spin-$(1,3/2)$ and spin-$(2,3/2)$ multiplets. First, we present the canonical realization of the super-Poincaré algebra on the spin-$(1,3/2)$ multiplet, which is shown to be consistently enhanced by the infinite-dimensional abelian algebra of angle-dependent bosonic and fermionic improper gauge symmetries associated with the electromagnetic and the Rarita-Schwinger fields, respectively. A similar analysis of the spin-$(2,3/2)$ multiplet is then carried out to obtain the canonical realization of the super-Poincaré algebra, consistently enhanced by the abelian improper bosonic gauge transformations of the spin-$2$ field (BMS supertranslations) and the abelian improper fermionic gauge transformations of the spin-$3/2$ field.