论文标题
Baum-Bott holomorthic分布的标志的残留物
Baum-Bott residue of flags of holomorphic distributions
论文作者
论文摘要
在这项工作中,我们将残留理论从全体形态叶子的旗帜扩展到全态分布的标志,并在某些情况下提供了一种计算此类的有效方法。结果,我们表明,如果我们考虑一个标志$ \ MATHCAL {f} =(\ Mathcal {f} _ {1},\ Mathcal {f} _ {2})$ holomorphic分布的$ \ \ \ \ \ \ \ \ \ \ m artbb {p}^{3} $之间的分布订单,我们在nlakention conference in nlagrations in nlagrations in wlagression in nlagritions in wlagress in wlagression, Euler特征和曲线的程度C。$
In this work we extend the residue theory from flag of holomorphic foliations to flag of holomorphic distributions and we provide an effective way to calculate this class in certain cases. As a consequence, we show that if we consider a flag $\mathcal{F} = (\mathcal{F}_{1}, \mathcal{F}_{2})$ of holomorphic distributions on $\mathbb{P}^{3}$, we get a relation between the degrees of the distributions in the flag, the tangency order of distributions, the Euler characteristic and the degree of the curve $C.$