论文标题
纳米多孔超级电容器的充电时间和存储属性之间的关系
Relation between charging times and storage properties of nanoporous supercapacitors
论文作者
论文摘要
研究纳米多孔电极的动态和静态存储特性之间的相关性对基于超级能力的技术的进一步进展是有益的。尽管经典密度功能理论(C-DFT)很好地描述了电容对孔径的依赖性,但文献中缺乏能够正确估计充电时间的动态C-DFT扩展。在这里,我们基于C-DFT开发了纳米孔内电解质的动态模型,并实际描述了时间依赖性充电过程和最大静态电容。我们的计算表明,充电始于按时的总电荷的平方根依赖性,然后遵循两个随后的指数趋势,其时间尺度明显不同,与已发布的模拟一致。我们证明,根据孔的大小,完整的充电时间对应于第一个或第二个指数趋势的时间尺度。同样,我们发现分析表达式适合各种参数的时间尺度。得出的相关性提供了充电时间与孔内孔的大小,施加电压和最终离子密度的关系,使这些表达式可用于设计具有功率和能量特性最佳组合的超级电容器。
Investigating the correlations between dynamic and static storage properties of nanoporous electrodes is beneficial for further progress of supercapacitors-based technologies. While the dependence of the capacitance on the pores' sizes is well described by classical Density Functional Theory (c-DFT), the lack of dynamic c-DFT extension capable for correct estimation of the charging time has been noted in the literature. Here, we develop a dynamic model of the electrolyte inside nanopores based on c-DFT and realistically describing both the time-dependent charging process and maximum static capacitance. Our calculations show that the charging starts with a square-root dependency of the total charge on time and then follows two subsequent exponential trends with significantly different time scales that agree with published simulations. We demonstrate that the full charging time corresponds to the timescale of either the first or the second exponential trend depending on the pores' size. Also, we find analytical expressions to fit the timescales for a wide range of parameters. Derived correlations provide the relation of charging time to pores' size, applied voltage, and final ions' densities inside the pore, making these expressions useful to design supercapacitors with an optimal combination of power and energy characteristics.