论文标题

自动:加速计算电化学系统发现

AutoMat: Accelerated Computational Electrochemical systems Discovery

论文作者

Annevelink, Emil, Kurchin, Rachel, Muckley, Eric, Kavalsky, Lance, Hegde, Vinay I., Sulzer, Valentin, Zhu, Shang, Pu, Jiankun, Farina, David, Johnson, Matthew, Gandhi, Dhairya, Dave, Adarsh, Lin, Hongyi, Edelman, Alan, Ramsundar, Bharath, Saal, James, Rackauckas, Christopher, Shah, Viral, Meredig, Bryce, Viswanathan, Venkatasubramanian

论文摘要

大规模电气化对于解决气候危机至关重要,但是对于化学工业和运输的充分电气,仍然存在一些科学和技术挑战。在这两个领域中,新的电化学材料都至关重要,但是它们的开发目前依赖于人类时间密集型实验试验,错误以及计算昂贵的第一原理,中尺度和连续性模拟。我们提出了自动化的自动工作流,该工作流程通过引入自动输入生成和跨量表的模拟管理,从第一原理到连续设备建模,从而加速了这些计算步骤。此外,我们展示了如何无缝整合多保真预测,例如机器学习替代物或自动化的机器人实验“在线”。自动化框架是通过设计空间搜索技术实现的,可以通过隐式学习设计功能来大大加速整体材料发现管道,从而优化多个指标的设备性能。我们讨论了使用电催化和能源存储中的示例自动组合的好处,并突出了学习的经验教训。

Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation. In both of these areas, new electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, meso-scale and continuum simulations. We present an automated workflow, AutoMat, that accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling. Furthermore, we show how to seamlessly integrate multi-fidelity predictions such as machine learning surrogates or automated robotic experiments "in-the-loop". The automated framework is implemented with design space search techniques to dramatically accelerate the overall materials discovery pipeline by implicitly learning design features that optimize device performance across several metrics. We discuss the benefits of AutoMat using examples in electrocatalysis and energy storage and highlight lessons learned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源