论文标题

驱动哈伯德模型的稳态的分析解决方案

Analytical Solution for the Steady States of the Driven Hubbard model

论文作者

Tindall, Joseph, Schlawin, Frank, Sentef, Michael A., Jaksch, Dieter

论文摘要

在连贯的周期性驾驶的作用下,通用量子系统将经过浮力加热并持续吸收能量,直到达到无特征的热状态。但是,由某些对称性引起的相位约束可以防止这种情况,并允许系统以偏置长距离阶的动态形成健壮的稳态。在这项工作中,我们将哈伯德模型放在任意填充的任意晶格上,并通过对系统的两个可能的SU(2)对称对角线进行对角线,我们可以分析地构建不同对称性驱动的相关稳态。这种结构使我们能够对这些状态所拥有的远程粒子孔和自旋交换相关性做出可验证的定量预测。如果在热力学极限中保留两个SU(2)对称性的情况下,我们显示了如何使用驱动来形成独特的冷凝物,该冷凝水同时托管颗粒孔和自旋波阶。

Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and continously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced by certain symmetries can, however, prevent this and allow the system to dynamically form robust steady states with off-diagonal long-range order. In this work, we take the Hubbard model on an arbitrary lattice with arbitrary filling and, by simultaneously diagonalising the two possible SU(2) symmetries of the system, we analytically construct the correlated steady states for different symmetry classes of driving. This construction allows us to make verifiable, quantitative predictions about the long-range particle-hole and spin-exchange correlations that these states can possess. In the case when both SU(2) symmetries are preserved in the thermodynamic limit we show how the driving can be used to form a unique condensate which simultaneously hosts particle-hole and spin-wave order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源