论文标题
有限尺寸的缩放与双重随机变量和阴影力矩在流行病的尺寸分布中
Finite-size scaling versus dual random variables and shadow moments in the size distribution of epidemics
论文作者
论文摘要
我讨论并批评使用“双重变换”来计算流行病分布中的“影子矩”。我展示了这种转变是如何任意的,不仅产生了致命分布的不合理的功能形式,而且事实证明是高度毫无身份的(请参阅手稿中的图1)。因此,从“影子力矩”方法计算出的预期死亡人数缺乏任何理论支持。这对于评估大流行的风险至关重要。我认为,解决统计物理学中这种问题的自然方法是通过有限尺寸的缩放。
I discuss and criticize the use of "dual transformations" to calculate "shadow moments" in the distribution of epidemic fatalities. I show how this transformation is arbitrary and not only yields an unjustified functional form for the distribution of fatalities but turns out to be highly unphysical (see Fig. 1 in the manuscript). Therefore, the expected number of fatalities calculated from the "shadow moments" approach lacks any theoretical support. This is of fundamental importance to assess risk from pandemics. I argue that the natural way to address this sort of problems in statistical physics is by means of finite-size scaling.