论文标题
GPU加速凸的近似值,用于快速多代理轨迹优化
GPU Accelerated Convex Approximations for Fast Multi-Agent Trajectory Optimization
论文作者
论文摘要
在本文中,我们提出了一种计算高效的轨迹优化器,该优化器可以利用GPU在一秒钟以下的几十个代理的共同计算轨迹上。优化器的核心是对非凸冲突避免限制的新型重新重新制定,将每次迭代的核心计算降低到解决大规模,凸,无约束的二次程序(QP)的核心计算。我们还表明,与QP相关的矩阵分解/逆计算只需要一次完成一次,并且可以在给定数量的代理下离线完成。这进一步简化了解决方案过程,有效地将其减少为评估一些矩阵矢量产物的问题。此外,对于大量代理,可以使用现有的现成库在GPU上琐碎地加速此计算。我们验证了优化器在具有挑战性的基准方面的性能,并在计算时间和轨迹质量方面对最新技术表现出了很大的改进。
In this paper, we present a computationally efficient trajectory optimizer that can exploit GPUs to jointly compute trajectories of tens of agents in under a second. At the heart of our optimizer is a novel reformulation of the non-convex collision avoidance constraints that reduces the core computation in each iteration to that of solving a large scale, convex, unconstrained Quadratic Program (QP). We also show that the matrix factorization/inverse computation associated with the QP needs to be done only once and can be done offline for a given number of agents. This further simplifies the solution process, effectively reducing it to a problem of evaluating a few matrix-vector products. Moreover, for a large number of agents, this computation can be trivially accelerated on GPUs using existing off-the-shelf libraries. We validate our optimizer's performance on challenging benchmarks and show substantial improvement over state of the art in computation time and trajectory quality.