论文标题

神经ARARALSIM:通过神经网络增强可区分的模拟器

NeuralSim: Augmenting Differentiable Simulators with Neural Networks

论文作者

Heiden, Eric, Millard, David, Coumans, Erwin, Sheng, Yizhou, Sukhatme, Gaurav S.

论文摘要

可区分的模拟器通过启用有效的,基于梯度的优化算法来查找最适合观察到的传感器读数的模拟参数,提供了缩小SIM到空隙间隙的途径。但是,这些分析模型只能预测其设计系统的动态行为。在这项工作中,我们通过神经网络研究了一种新型可区分的刚体物理引擎的增强,该神经网络能够学习动态数量之间的非线性关系,因此可以学习在传统模拟器中无法解释的效果。与完全数据驱动的模型相比,增加的数据需要更少的数据来训练和推广更好。通过广泛的实验,我们证明了混合模拟器学习涉及来自真实数据的摩擦接触的复杂动力学的能力,以及匹配已知的粘性摩擦模型,并提出了一种自动发现有用增强的方法。我们表明,除了受益于动态建模外,插入神经网络还可以加速基于模型的控制体系结构。我们在使用神经网络的四倍机器人中替换了模型预测的步态控制器内QP求解器时,我们会观察到十倍的速度,从而使我们能够显着改善控制延迟,因为我们在现实硬件实验中所证明的那样。 我们在https://sites.google.com/usc.edu/neuralsim上发布了实验中的代码,其他结果和视频。

Differentiable simulators provide an avenue for closing the sim-to-real gap by enabling the use of efficient, gradient-based optimization algorithms to find the simulation parameters that best fit the observed sensor readings. Nonetheless, these analytical models can only predict the dynamical behavior of systems for which they have been designed. In this work, we study the augmentation of a novel differentiable rigid-body physics engine via neural networks that is able to learn nonlinear relationships between dynamic quantities and can thus learn effects not accounted for in traditional simulators.Such augmentations require less data to train and generalize better compared to entirely data-driven models. Through extensive experiments, we demonstrate the ability of our hybrid simulator to learn complex dynamics involving frictional contacts from real data, as well as match known models of viscous friction, and present an approach for automatically discovering useful augmentations. We show that, besides benefiting dynamics modeling, inserting neural networks can accelerate model-based control architectures. We observe a ten-fold speed-up when replacing the QP solver inside a model-predictive gait controller for quadruped robots with a neural network, allowing us to significantly improve control delays as we demonstrate in real-hardware experiments. We publish code, additional results and videos from our experiments on our project webpage at https://sites.google.com/usc.edu/neuralsim.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源