论文标题

PRVNET:一种新型的部分规范化的变异自动编码器,用于大量MIMO CSI反馈

PRVNet: A Novel Partially-Regularized Variational Autoencoders for Massive MIMO CSI Feedback

论文作者

Hussien, Mostafa, Nguyen, Kim Khoa, Cheriet, Mohamed

论文摘要

在多输入的多输出频率划分双工(MIMO-FDD)系统中,用户设备(UE)将下行链路通道状态信息(CSI)发送到基础站以报告链接状态。由于MIMO系统的复杂性,发送此信息产生的高架对系统带宽产生负面影响。尽管在文献中已广泛考虑了这个问题,但先前的工作通常假定理想的反馈渠道。在本文中,我们介绍了PRVNET,这是一种受差异自动编码器(VAE)启发的神经网络体系结构,以压缩CSI矩阵,然后再将其发送回嘈杂的通道条件下将其发送回基站。此外,我们提出了一种定制的损失功能,该功能最适合所解决的问题的特殊特征。我们还为学习目标引入了另外的正规化超参数,这对于实现竞争性能至关重要。此外,我们还提供了一种有效的方法,可以使用kl耗电来调整此超参数。实验结果表明,在无噪声反馈通道假设中,提出的模型的表现优于基准模型,包括两个基于深度学习的模型。此外,提议的模型在不同的噪声水平下为添加剂白色高斯噪声反馈通道达到了出色的性能。

In a multiple-input multiple-output frequency-division duplexing (MIMO-FDD) system, the user equipment (UE) sends the downlink channel state information (CSI) to the base station to report link status. Due to the complexity of MIMO systems, the overhead incurred in sending this information negatively affects the system bandwidth. Although this problem has been widely considered in the literature, prior work generally assumes an ideal feedback channel. In this paper, we introduce PRVNet, a neural network architecture inspired by variational autoencoders (VAE) to compress the CSI matrix before sending it back to the base station under noisy channel conditions. Moreover, we propose a customized loss function that best suits the special characteristics of the problem being addressed. We also introduce an additional regularization hyperparameter for the learning objective, which is crucial for achieving competitive performance. In addition, we provide an efficient way to tune this hyperparameter using KL-annealing. Experimental results show the proposed model outperforms the benchmark models including two deep learning-based models in a noise-free feedback channel assumption. In addition, the proposed model achieves an outstanding performance under different noise levels for additive white Gaussian noise feedback channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源