论文标题

通过卷积神经网络进行植物性疾病分类的优化者的性能分析

Performance Analysis of Optimizers for Plant Disease Classification with Convolutional Neural Networks

论文作者

Labhsetwar, Shreyas Rajesh, Haridas, Soumya, Panmand, Riyali, Deshpande, Rutuja, Kolte, Piyush Arvind, Pati, Sandhya

论文摘要

由于有害生物和疾病,作物衰竭是印度农业内部固有的,导致每年生产率的15%至25%的损失,导致巨大的经济损失。这项研究分析了通过深度学习方法对植物疾病进行预测分析的各种优化者的性能。该研究使用卷积神经网络将3种农作物的农场或植物叶样品分类为15种。这项研究中使用的各种优化器包括RMSPROP,ADAM和AMSGRAD。通过绘制训练和验证精度和损失曲线,ROC曲线和混淆矩阵来可视化优化器的性能。使用ADAM Optimizer实现了最佳性能,最大验证精度为98%。本文的重点是研究分析,证明可以借助卫星,基于无人机或基于移动的图像来预测和先享用植物疾病,从而减少农作物衰竭和农业损失。

Crop failure owing to pests & diseases are inherent within Indian agriculture, leading to annual losses of 15 to 25% of productivity, resulting in a huge economic loss. This research analyzes the performance of various optimizers for predictive analysis of plant diseases with deep learning approach. The research uses Convolutional Neural Networks for classification of farm or plant leaf samples of 3 crops into 15 classes. The various optimizers used in this research include RMSprop, Adam and AMSgrad. Optimizers Performance is visualised by plotting the Training and Validation Accuracy and Loss curves, ROC curves and Confusion Matrix. The best performance is achieved using Adam optimizer, with the maximum validation accuracy being 98%. This paper focuses on the research analysis proving that plant diseases can be predicted and pre-empted using deep learning methodology with the help of satellite, drone based or mobile based images that result in reducing crop failure and agricultural losses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源