论文标题

计算平面图中最短路径的长度

Computing Lengths of Non-Crossing Shortest Paths in Planar Graphs

论文作者

Balzotti, Lorenzo, Franciosa, Paolo G.

论文摘要

鉴于平面无向图$ g $,具有非负边缘的重量和外部面上的一组$ k $终端对,在高桥等人中显示。 (Algorithmica,16,1996,pp。339-357)$ u $ u $ u $ u $ u $ u $ non-k $ non-brossing最短路径加入了$ k $ terminal对(如果存在的话),则可以在$ o(n \ log n)$ time中计算,而$ n $是$ n $ $ g $ g $ $ g $。在有限的情况下,最短路径的联合$ u $是森林,还表明它们的长度可以在同一时间绑定。我们在本文中表明,始终可以计算$ k $的最短路径的长度在线性时间内连接$ k $终端对,一旦计算出最短的路径union $ u $,也可以在$ u $中包含循环。 此外,每个最短路径$π$都可以在$ o(\ max \ {\ ell,\ ell \ log \ frac {k} {\ ell} \})$中列出,其中$ \ ell $是$π$中的$ \ ell $。 结果,可以在一般情况下以$ O(n \ log k)$时间来求解非方向加权图的非交叉路径及其长度的问题。

Given a plane undirected graph $G$ with non-negative edge weights and a set of $k$ terminal pairs on the external face, it is shown in Takahashi et al. (Algorithmica, 16, 1996, pp. 339-357) that the union $U$ of $k$ non-crossing shortest paths joining the $k$ terminal pairs (if they exist) can be computed in $O(n\log n)$ time, where $n$ is the number of vertices of $G$. In the restricted case in which the union $U$ of the shortest paths is a forest, it is also shown that their lengths can be computed in the same time bound. We show in this paper that it is always possible to compute the lengths of $k$ non-crossing shortest paths joining the $k$ terminal pairs in linear time, once the shortest paths union $U$ has been computed, also in the case $U$ contains cycles. Moreover, each shortest path $π$ can be listed in $O(\max\{\ell, \ell \log\frac{k}{\ell} \})$, where $\ell$ is the number of edges in $π$. As a consequence, the problem of computing non-crossing shortest paths and their lengths in a plane undirected weighted graph can be solved in $O(n\log k)$ time in the general case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源