论文标题
关于多维k-moment问题
On the multidimensional K-moment problem
论文作者
论文摘要
我们证明了$ r^d $上的stieltjes瞬间问题的解决性定理,该问题基于多变量stieltjes条件$ \ sum_ {n = 1}^\ infty l(x_j^n)^{ - 1/(1/(1/(2n)} =+\ infty $,$ j = 1,$ j = 1,$ j = 1,$ j = $ n MARTER,n MARTER是n MARTER,n MARTER是n MARTER,n MARTER INDER INDER INDER INDER INDER INDER nimed。在$ r^d $的无界半代数子集上。
We prove a solvability theorem for the Stieltjes moment problem on $R^d$ which is based on the multivariate Stieltjes condition $\sum_{n=1}^\infty L(x_j^n)^{-1/(2n)}=+\infty$, $j=1,\dots,d.$ This result is applied to derive a new solvability theorem for the moment problem on unbounded semi-algebraic subsets of $R^d$.