论文标题

用于形状分类的点变压器和3D和ALS屋顶点的检索

Point Transformer for Shape Classification and Retrieval of 3D and ALS Roof PointClouds

论文作者

Shajahan, Dimple A, T, Mukund Varma, Muthuganapathy, Ramanathan

论文摘要

深度学习方法的成功导致了与遥感中的应用程序的3点云处理任务中的重大突破。现有的方法利用有一些局限性的卷积,因为它们假设输入分布均匀并且无法学习长期依赖性。最近的作品表明,与这些方法结合使用,增加了注意力可以提高性能。这提出了一个问题:注意层可以完全取代卷积吗?本文提出了一个完全注意的模型 - {\ em Point Transformer},用于得出丰富的点云表示。该模型的形状分类和检索性能在大规模的Urban DataSet -Roofn3d和标准基准数据集ModelNet40上评估。进行了广泛的实验,以测试模型的鲁棒性,以使观察点损坏以分析其对实际数据集的有效性。该方法的表现优于Roofn3D数据集中的其他最先进的模型,在ModelNet40基准测试中给出了竞争性结果,并展示了对各种看不见的点腐败的高鲁棒性。此外,与其他方法相比,该模型具有高度的内存和空间效率。

The success of deep learning methods led to significant breakthroughs in 3-D point cloud processing tasks with applications in remote sensing. Existing methods utilize convolutions that have some limitations, as they assume a uniform input distribution and cannot learn long-range dependencies. Recent works have shown that adding attention in conjunction with these methods improves performance. This raises a question: can attention layers completely replace convolutions? This paper proposes a fully attentional model - {\em Point Transformer}, for deriving a rich point cloud representation. The model's shape classification and retrieval performance are evaluated on a large-scale urban dataset - RoofN3D and a standard benchmark dataset ModelNet40. Extensive experiments are conducted to test the model's robustness to unseen point corruptions for analyzing its effectiveness on real datasets. The proposed method outperforms other state-of-the-art models in the RoofN3D dataset, gives competitive results in the ModelNet40 benchmark, and showcases high robustness to various unseen point corruptions. Furthermore, the model is highly memory and space efficient when compared to other methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源