论文标题

多模式轨迹通过拓扑不变性在不受控制的十字路口进行导航的预测

Multimodal Trajectory Prediction via Topological Invariance for Navigation at Uncontrolled Intersections

论文作者

Roh, Junha, Mavrogiannis, Christoforos, Madan, Rishabh, Fox, Dieter, Srinivasa, Siddhartha S.

论文摘要

我们专注于在\ emph {不受控制的}交叉点,即没有交通标志或信号的街道交叉点之间的多个非通信理性代理之间的分散导航。避免在此类领域的碰撞取决于代理人可靠地预测意图并迅速做出反应的能力。多基因轨迹预测为NP-HARD,而现有数据驱动方法的样本复杂性限制了其适用性。我们的关键见解是,交叉路口的几何结构以及代理人有效移动并避免碰撞(理性)的动机减少了可能行为的空间,从而有效地放松了轨迹预测的问题。在本文中,我们将相交处的多轨迹轨迹的空间崩溃为代表不同类别的多种行为的模式,并使用拓扑不变性概念正式化。基于这种形式主义,我们设计了多个拓扑预测(MTP),该预测是一种数据驱动的轨迹预测机制,可重建多型相交场景中高样子模式的轨迹表示。我们表明,MTP的表现优于最先进的多模式轨迹预测基线(MFP),而预测准确性则在具有挑战性的模拟数据集上占78.24%。最后,我们表明MTP使我们的基于优化的计划者MTPNAV能够在Carla Simulator上的各种具有挑战性的交叉点方案上实现无冲突和时间效率的导航。

We focus on decentralized navigation among multiple non-communicating rational agents at \emph{uncontrolled} intersections, i.e., street intersections without traffic signs or signals. Avoiding collisions in such domains relies on the ability of agents to predict each others' intentions reliably, and react quickly. Multiagent trajectory prediction is NP-hard whereas the sample complexity of existing data-driven approaches limits their applicability. Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors, effectively relaxing the problem of trajectory prediction. In this paper, we collapse the space of multiagent trajectories at an intersection into a set of modes representing different classes of multiagent behavior, formalized using a notion of topological invariance. Based on this formalism, we design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes. We show that MTP outperforms a state-of-the-art multimodal trajectory prediction baseline (MFP) in terms of prediction accuracy by 78.24% on a challenging simulated dataset. Finally, we show that MTP enables our optimization-based planner, MTPnav, to achieve collision-free and time-efficient navigation across a variety of challenging intersection scenarios on the CARLA simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源