论文标题

利用前向模型预测错误的学习控制

Leveraging Forward Model Prediction Error for Learning Control

论文作者

Bechtle, Sarah, Hammoud, Bilal, Rai, Akshara, Meier, Franziska, Righetti, Ludovic

论文摘要

基于模型的控制的学习可以是样本有效的,并且可以很好地概括,但是成功地代表手头问题的模型和控制器对于复杂的任务可能具有挑战性。使用不准确的学习模型可以导致次级最佳解决方案,这些解决方案不太可能在实践中表现良好。在这项工作中,我们提出了一种学习方法,该方法在模型学习和数据收集之间进行迭代,并利用前向模型预测错误的学习控制。我们展示了如何使用控制器的预测作为向前模型的输入可以在控制器和模型之间创建可区分的连接,从而使我们能够在状态空间中提出损失。这使我们能够在控制器学习过程中包括远期模型预测错误,并且我们表明,这创建了一个损失目标,可以显着改善对不同电机控制任务的学习。我们提供了经验和理论结果,以显示我们方法的好处,并在模拟中进行了评估,用于对7 DOF操纵器的学习控制和未射的12 doF四倍。我们表明,我们的方法成功地学习了控制器,以挑战涉及联系转换的电机控制任务。

Learning for model based control can be sample-efficient and generalize well, however successfully learning models and controllers that represent the problem at hand can be challenging for complex tasks. Using inaccurate models for learning can lead to sub-optimal solutions, that are unlikely to perform well in practice. In this work, we present a learning approach which iterates between model learning and data collection and leverages forward model prediction error for learning control. We show how using the controller's prediction as input to a forward model can create a differentiable connection between the controller and the model, allowing us to formulate a loss in the state space. This lets us include forward model prediction error during controller learning and we show that this creates a loss objective that significantly improves learning on different motor control tasks. We provide empirical and theoretical results that show the benefits of our method and present evaluations in simulation for learning control on a 7 DoF manipulator and an underactuated 12 DoF quadruped. We show that our approach successfully learns controllers for challenging motor control tasks involving contact switching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源