论文标题

陀螺式张力机器人臂的强大形状控制

Robust Shape Control of Gyroscopic Tensegrity Robotic Arm

论文作者

Goyal, Raman, Majji, Manoranjan, Skelton, Robert E.

论文摘要

本文提出了一种基于模型的方法来通过推动其节点位置位置来控制紧张系统的形状。张力系统的非线性动力学用于调节指定参考轨迹的位置,速度和加速度。状态反馈控制设计用于获得控制变量的解决方案,作为线性编程问题。讨论了陀螺式张力系统的形状控制,并观察到,这些系统通过对某些自由度的独立控制来增加结构的可覆盖空间。在论文中进一步研究了紧张系统的干扰拒绝。提供了一种计算控制收益以绑定五种不同类型问题的错误的方法。该配方使用线性矩阵不等式(LMI)方法来规定$ \ Mathcal {h} _ \ infty $的误差的所需性能界限,概括$ \ Mathcal {h} _2 _2 $,LQR,LQR,协方差,协方差控制和稳定控制控制问题。高度的自由度紧张$ T_2D_1 $机器人臂被用作显示配方功效的示例。

This paper proposes a model-based approach to control the shape of a tensegrity system by driving its node position locations. The nonlinear dynamics of the tensegrity system is used to regulate position, velocity, and acceleration to the specified reference trajectory. State feedback control design is used to obtain the solution for the control variable as a linear programming problem. Shape control for the gyroscopic tensegrity systems is discussed, and it is observed that these systems increase the reachable space for the structure by providing independent control over certain rotational degrees of freedom. Disturbance rejection of the tensegrity system is further studied in the paper. A methodology to calculate the control gains to bound the errors for five different types of problems is provided. The formulation uses a Linear Matrix Inequality (LMI) approach to stipulate the desired performance bounds on the error for $\mathcal{H}_\infty$, generalized $\mathcal{H}_2$, LQR, covariance control and stabilizing control problem. A high degree of freedom tensegrity $T_2D_1$ robotic arm is used as an example to show the efficacy of the formulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源