论文标题

用于消费者建模的数据驱动机器学习方法,负载分解

A Data-Driven Machine Learning Approach for Consumer Modeling with Load Disaggregation

论文作者

Zarabie, A. Khaled, Das, Sanjoy, Wu, Hongyu

论文摘要

尽管非参数模型(例如神经网络)在负载预测中足够,但固定和可移位负载的单独估计值对各种应用程序有益,例如分配系统运营计划,负载计划,能源交易以及公用事业需求需求响应计划。通常需要一个半参数估计模型,在必须知道需求的成本敏感性的情况下。现有的研究工作始终使用一些任意参数,这些参数似乎最有效。在本文中,我们提出了一类通用数据驱动的半参数模型,这些模型源自住宅消费者的消费数据。开发了两阶段的机器学习方法。在第一阶段,将载荷分解为固定且可移位的组件,通过由非负基矩阵分解(NMF)和高斯混合模型(GMM)组成的混合算法(GMM)来完成,后者受到预期 - 临时化(EM)algorithm的训练。固定和可转移的负载受经济考虑的分析治疗。在第二阶段,使用L2-norm,不敏感的回归方法估算模型参数。两个住宅客户的实际能源使用数据显示了该方法的有效性。

While non-parametric models, such as neural networks, are sufficient in the load forecasting, separate estimates of fixed and shiftable loads are beneficial to a wide range of applications such as distribution system operational planning, load scheduling, energy trading, and utility demand response programs. A semi-parametric estimation model is usually required, where cost sensitivities of demands must be known. Existing research work consistently uses somewhat arbitrary parameters that seem to work best. In this paper, we propose a generic class of data-driven semiparametric models derived from consumption data of residential consumers. A two-stage machine learning approach is developed. In the first stage, disaggregation of the load into fixed and shiftable components is accomplished by means of a hybrid algorithm consisting of non-negative matrix factorization (NMF) and Gaussian mixture models (GMM), with the latter trained by an expectation-maximization (EM) algorithm. The fixed and shiftable loads are subject to analytic treatment with economic considerations. In the second stage, the model parameters are estimated using an L2-norm, epsilon-insensitive regression approach. Actual energy usage data of two residential customers show the validity of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源