论文标题
将粗糙集定义为三值函数的核心支持对
Defining rough sets as core-support pairs of three-valued functions
论文作者
论文摘要
我们回答一个问题,即在集合$ u $上的三值函数的$ \ mathcal {f} $必须实现的属性,以便在$ u $上实现了quasiorder $ \ leq $,以使得由$ \ leq $ comconies cocice cocience cocice cocice cocice cocience cocice cocies coce core core-papport in Core-uspport of pairs $ sup-pairs in Mathcal of Mathcal f}。采用这种表征,我们给出了由等价函数的三值olukasiewicz代数来确定的粗略集合的新表示。
We answer the question what properties a collection $\mathcal{F}$ of three-valued functions on a set $U$ must fulfill so that there exists a quasiorder $\leq$ on $U$ such that the rough sets determined by $\leq$ coincide with the core--support pairs of the functions in $\mathcal{F}$. Applying this characterization, we give a new representation of rough sets determined by equivalences in terms of three-valued Łukasiewicz algebras of three-valued functions.