论文标题

深层模式通过利润障碍损失

Deep Cross-modal Hashing via Margin-dynamic-softmax Loss

论文作者

Tu, Rong-Cheng, Mao, Xian-Ling, Tu, Rongxin, Bian, Binbin, Wei, Wei, Huang, Heyan

论文摘要

由于它们的高检索效率和跨模式搜索任务的存储成本较低,因此跨模式哈希方法引起了极大的关注。对于有监督的跨模式哈希方法,如何使学习的哈希码保存在数据标签中充分包含的语义信息是进一步增强检索性能的关键。因此,几乎所有监督的跨模式哈希方法通常取决于定义数据点之间与标签信息之间的相似性,以完全或部分地指导哈希模型学习。但是,数据点之间的定义相似性只能部分捕获数据点的标签信息,而错过了丰富的语义信息,然后阻碍了检索性能的进一步改善。因此,在本文中,我们与以前的作品不同,我们提出了一种新型的跨模式哈希方法,而没有定义数据点之间的相似性,即通过\ textit {margin-dynamic-softmax损失}(dchml)称为深跨模式哈希。具体而言,DCHML首先训练代理哈希网络,以将数据集的每个类别信息转换为语义歧视性哈希代码,称为代理哈希代码。每个代理哈希代码都可以很好地保留其相应类别的语义信息。接下来,在没有定义数据点之间的相似性以监督特定于模式的哈希网络的训练过程中,我们提出了一个新颖的\ textit {margin-dynamic-softmax损失},以直接利用代理哈希码作为监督信息。最后,通过将小说\ textit {margin-dynamic-softmax损失}最小化,可以训练特定于模态的哈希网络以生成哈希码,从而可以同时保留交叉模式的相似性和丰富的语义信息。

Due to their high retrieval efficiency and low storage cost for cross-modal search task, cross-modal hashing methods have attracted considerable attention. For the supervised cross-modal hashing methods, how to make the learned hash codes preserve semantic information sufficiently contained in the label of datapoints is the key to further enhance the retrieval performance. Hence, almost all supervised cross-modal hashing methods usually depends on defining a similarity between datapoints with the label information to guide the hashing model learning fully or partly. However, the defined similarity between datapoints can only capture the label information of datapoints partially and misses abundant semantic information, then hinders the further improvement of retrieval performance. Thus, in this paper, different from previous works, we propose a novel cross-modal hashing method without defining the similarity between datapoints, called Deep Cross-modal Hashing via \textit{Margin-dynamic-softmax Loss} (DCHML). Specifically, DCHML first trains a proxy hashing network to transform each category information of a dataset into a semantic discriminative hash code, called proxy hash code. Each proxy hash code can preserve the semantic information of its corresponding category well. Next, without defining the similarity between datapoints to supervise the training process of the modality-specific hashing networks , we propose a novel \textit{margin-dynamic-softmax loss} to directly utilize the proxy hashing codes as supervised information. Finally, by minimizing the novel \textit{margin-dynamic-softmax loss}, the modality-specific hashing networks can be trained to generate hash codes which can simultaneously preserve the cross-modal similarity and abundant semantic information well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源