论文标题

具有奇数发电机的分数斐波那契组

Fractional Fibonacci groups with an odd number of generators

论文作者

Chinyere, Ihechukwu, Williams, Gerald

论文摘要

众所周知,斐波那契组$ f(n)$取决于$ n $的均等行为。我们将$ f(n)$ odd $ n $的$ f(n)$的已知结果扩展到了fibonacci组的家族$ f^{k/l}(n)$。我们表明,对于奇数$ n $,组$ f^{k/l}(n)$不是有限体积的可定向双曲线3孔的基本组。我们获得了有关组中扭转$ f^{k/l}(n)$($ n $是奇怪的)的结果,特别注意$ f^k(n)$和$ f^{k/l}(3)$,并观察到有关其偏移扩展相对表现的后果。我们表明,如果$ f^{k}(n)$(其中$ n $是奇数)和$ f^{k/l}(3)$是非循环的3个manifold组,那么它们对Quaternion Group $ q_8 $的直接产物是同构的。

The Fibonacci groups $F(n)$ are known to exhibit significantly different behaviour depending on the parity of $n$. We extend known results for $F(n)$ for odd $n$ to the family of Fractional Fibonacci groups $F^{k/l}(n)$. We show that for odd $n$ the group $F^{k/l}(n)$ is not the fundamental group of an orientable hyperbolic 3-orbifold of finite volume. We obtain results concerning the existence of torsion in the groups $F^{k/l}(n)$ (where $n$ is odd) paying particular attention to the groups $F^k(n)$ and $F^{k/l}(3)$, and observe consequences concerning asphericity of relative presentations of their shift extensions. We show that if $F^{k}(n)$ (where $n$ is odd) and $F^{k/l}(3)$ are non-cyclic 3-manifold groups then they are isomorphic to the direct product of the quaternion group $Q_8$ and a finite cyclic group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源