论文标题
$ pr_ {1-x} ca_xmno_3 $ photovoltaics探测的轨道订单相变
Orbital order phase transition in $Pr_{1-x}Ca_xMnO_3$ probed by photovoltaics
论文作者
论文摘要
$ pr_ {1-x} ca_xmno_3 $的相图被修改为x $ \ le $ 0.3,这表明对该掺杂区域中其他锰矿的相位图进行了重新评估。我们提出,我们提出已经接近室温接近的自发轨道秩序的轨道有序相位,而不是达到约800-1100 K的高温。在此温度之上,该相的特征是有限的轨道极化和八面体倾斜模式。倾斜模式将伴侣伴随到Jahn-Teller失真,从而引起剩余的轨道顺序,该顺序持续到高温,倾斜顺序也丢失。这解释了轨道顺序的实验性观察到高温。轨道顺序过渡的重新评估基于在220-260 K的各种物理特性的异常基础上,在$ pr_ {1-x} ca_xmno_3 $ x = 0.1的外部延长薄膜中的温度为220-260 K,即光电传输效果,电气传输,磁化,磁场和超级泵研究。基于基于第一原理计算的经过仔细调整参数的紧密结合模型的有限温度仿真显示出符号的轨道顺序相变,$ t_ {oo} \ $ 300 k的x = 0.1 = 0.1。这与对晶格参数的温度依赖性变化的实验性观察是一致的,对于x = 0的X = 0.1 = 0.1的相同掺杂的散装样品,x = 0,典型的二阶相变过。由于我们对轨道秩序相过渡到较低温度的重新分配挑战了一个公认且长期以来的图片,因此我们提供了多次互补测量的结果以及详细的讨论。
The phase diagram of $Pr_{1-x}Ca_xMnO_3$ is modified x $\le$ 0.3, which suggests a reevaluation of the phase diagram of other manganites in that doping region. Rather than an orbital ordered phase reaching up to high temperatures of approximately 800-1100 K, we propose a loss of spontaneous orbital order already near room temperature. Above this temperature, the phase is characterized by a finite orbital polarization and octahedral tilt pattern. The tilt pattern couples to the Jahn-Teller distortion and thus induces a remaining orbital order, which persists up to high temperatures, where the tilt order is lost as well. This explains the experimental observation of orbital order up to high temperatures. The reevaluation of the orbital order transition is based on observed anomalies of various physical properties at a temperatures of 220-260 K in epitaxial thin films of $Pr_{1-x}Ca_xMnO_3$ x=0.1, i.e.in the photovoltaic effect, electric transport, magnetization, optical and ultrafast transient pump probe studies. Finite-temperature simulations based on a tight-binding model with carefully adjusted parameters from first-principles calculations exhibit an orbital order phase transition at $T_{OO} \approx$ 300 K for x=0.1. This is consistent with the experimental observation of a temperature dependent change in lattice parameter for bulk samples of the same doping at 300 K for x=0.1 and 350 K for x=0, typical for a second order phase transition. Since our reassignment of the orbital order phase transition towards lower temperatures challenges a well-established and long-accepted picture, we provide results of multiple complementary measurements as well as a detailed discussion.