论文标题
Gleason-Kahane-孙 - elazko定理在功能空间中
Gleason-Kahane-Żelazko theorems in function spaces
论文作者
论文摘要
Gleason-Kahane-Zelazko定理指出,在Banach代数上的线性功能在可演变元素上并非零零是一个字符的标量倍数。最近,该定理已扩展到某些不是代数的BANACH函数空间。在本文中,我们简要介绍了这些扩展。
The Gleason-Kahane-Żelazko theorem states that a linear functional on a Banach algebra that is non-zero on invertible elements is necessarily a scalar multiple of a character. Recently this theorem has been extended to certain Banach function spaces that are not algebras. In this article we present a brief survey of these extensions.