论文标题
关于通过封闭的符号歧管实现符号代数和合理同喻类型
On the realization of symplectic algebras and rational homotopy types by closed symplectic manifolds
论文作者
论文摘要
我们回答了一个关于象征性代数的问题,即通过四个方面的符号歧管,以及在所有维度中的lupton-oprea问题,以及一个lupton-oprea的问题。这也将使我们能够在所有六个及更高的维度中解决oprea-tralle的另一个问题,该问题是关于代数条件在有理同型的最小模型上的可能性的可能性,这意味着在歧管上存在符号结构。
We answer a question of Oprea-Tralle on the realizability of symplectic algebras by symplectic manifolds in dimensions divisible by four, along with a question of Lupton-Oprea in all even dimensions. This will also allow us to address, in all even dimensions six and higher, another question of Oprea-Tralle on the possibility of algebraic conditions on the rational homotopy minimal model of a closed smooth manifold implying the existence of a symplectic structure on the manifold.