论文标题
O级分组O最小扩展中的可定义Tietze扩展特性
Definable Tietze extension property in o-minimal expansion of ordered group
论文作者
论文摘要
以下两个断言是等效的,对于有序组$ \ MATHCAL M =(m,<,+,0,\ ldots)$的O小米扩展。有界间隔和无界间隔之间存在可定义的培训。在$ m^n $的可定义闭合子集上定义的任何可定义的连续函数$ f:a \ rightarrow m $具有可定义的连续扩展名$ f:m^n \ rightarrow m $。
The following two assertions are equivalent for an o-minimal expansion of an ordered group $\mathcal M=(M,<,+,0,\ldots)$. There exists a definable bijection between a bounded interval and an unbounded interval. Any definable continuous function $f:A \rightarrow M$ defined on a definable closed subset of $M^n$ has a definable continuous extension $F:M^n \rightarrow M$.