论文标题
现实生活中的几个射击对象检测:自动收获的案例研究
Few-Shot Object Detection in Real Life: Case Study on Auto-Harvest
论文作者
论文摘要
Covid-19期间的囚禁对世界各地的农业造成了严重影响。作为有效的解决方案之一,基于对象检测和机器人收割机的机械收获/自动收获将成为迫切需要。在自动收获系统中,强大的几弹对象检测模型是瓶颈之一,因为该系统需要处理新的蔬菜/水果类别,并且收集了所有新颖类别的大规模注释数据集的收集。社区开发了许多射击对象检测模型。然而,是否可以直接用于现实生活中的农业应用程序仍然值得怀疑,因为常用培训数据集与现实生活中农业场景中收集的图像之间存在上下文差距。为此,在这项研究中,我们提出了一个新颖的黄瓜数据集,并提出了两种数据增强策略,有助于弥合上下文差距。实验结果表明,1)最先进的几个射击对象检测模型在新颖的“黄瓜”类别上的性能很差; 2)提出的增强策略的表现优于常用的增强策略。
Confinement during COVID-19 has caused serious effects on agriculture all over the world. As one of the efficient solutions, mechanical harvest/auto-harvest that is based on object detection and robotic harvester becomes an urgent need. Within the auto-harvest system, robust few-shot object detection model is one of the bottlenecks, since the system is required to deal with new vegetable/fruit categories and the collection of large-scale annotated datasets for all the novel categories is expensive. There are many few-shot object detection models that were developed by the community. Yet whether they could be employed directly for real life agricultural applications is still questionable, as there is a context-gap between the commonly used training datasets and the images collected in real life agricultural scenarios. To this end, in this study, we present a novel cucumber dataset and propose two data augmentation strategies that help to bridge the context-gap. Experimental results show that 1) the state-of-the-art few-shot object detection model performs poorly on the novel `cucumber' category; and 2) the proposed augmentation strategies outperform the commonly used ones.