论文标题

超对面的非物质近似值

Superconvergent Non-Polynomial Approximations

论文作者

Christlieb, Andrew, Sands, William, Yang, Hyoseon

论文摘要

在本文中,我们介绍了一种超融合近似方法,该方法在保护法的数值解决方案中采用了径向基函数(RBF)。 RBF用于插值和近似是一个良好的研究领域。在这项工作中特别有趣的是,高阶有限体积(FV)加权基本上非振荡(WENO)方法的发展,该方法利用RBF近似值在细胞接口处获得所需的数据。通过对截断误差的分析来解决SuperConvergence,从而导致形状参数的表达式,从而提高了近似值的准确性。这项研究旨在解决该方法的实际要素,包括对形状参数的评估以及混合实施。为了强调非物质基础的有效性,在捕捉刺激中,提出的方法应用于一维的双曲线和弱屈光度的保护定律系统,并将其与文献中的几种众所周知的FV WENO方案进行了比较。在非平滑,弱的双曲线测试问题的情况下,在预测有限时间爆炸的位置和高度时可以观察到显着改善。融合结果表明,所提出的方案在精度上取得了显着改善,如重建分析所示。我们还包括有关扩展到更高维问题的讨论,以及非线性标量问题的收敛结果。

In this paper, we introduce a superconvergent approximation method that employs radial basis functions (RBFs) in the numerical solution of conservation laws. The use of RBFs for interpolation and approximation is a well developed area of research. Of particular interest in this work is the development of high order finite volume (FV) weighted essentially non-oscillatory (WENO) methods, which utilize RBF approximations to obtain required data at cell interfaces. Superconvergence is addressed through an analysis of the truncation error, resulting in expressions for the shape parameters that lead to improvements in the accuracy of the approximations. This study seeks to address the practical elements of the approach, including the evaluations of shape parameters as well as hybrid implementation. To highlight the effectiveness of the non-polynomial basis, in shock-capturing, the proposed methods are applied to one-dimensional hyperbolic and weakly hyperbolic systems of conservation laws and compared with several well-known FV WENO schemes in the literature. In the case of the non-smooth, weakly hyperbolic test problem, notable improvements are observed in predicting the location and height of the finite time blowup. The convergence results demonstrate that the proposed schemes attain notable improvements in accuracy, as indicated by the analysis of the reconstructions. We also include a discussion regarding extensions to higher dimensional problems, along with convergence results for a nonlinear scalar problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源