论文标题

Wigner函数形式主义中自旋1/2费米的量子动力学理论

Quantum kinetic theory for spin-1/2 fermions in Wigner function formalism

论文作者

Gao, Jian-Hua, Liang, Zuo-Tang, Wang, Qun

论文摘要

我们简要概述了Wigner函数配方中的Spin-1/2 fermions的动力学理论。手性和自旋动力学方程可以从Wigner函数方程式得出。一般的Wigner函数具有16个组件,可满足32个耦合方程。对于无质量的费米子,由于左撇子和右手颗粒的脱钩,独立方程的数量可以大大减少。可以证明,在Wigner函数的许多组件及其耦合方程中,只有一个动力学方程是独立的。这称为手性费米子的Wigner函数的分离定理。对于大量的费米子,事实证明,一个粒子分布函数和三个自旋分布函数是独立的,并且满足四个动力学方程。各种手性和自旋效应,例如手性磁和选票效应,手性分离效应,自旋极化效应可以在形式主义中始终如一地描述。

We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32 coupled equations. For massless fermions, the number of independent equations can be significantly reduced due to the decoupling of left-handed and right-handed particles. It can be proved that out of many components of Wigner functions and their coupled equations, only one kinetic equation for the distribution function is independent. This is called the disentanglement theorem for Wigner functions of chiral fermions. For massive fermions, it turns out that one particle distribution function and three spin distribution functions are independent and satisfy four kinetic equations. Various chiral and spin effects such as chiral magnetic and votical effects, the chiral seperation effect, spin polarization effects can be consistently described in the formalism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源