论文标题
SBML2Julia:与有效的非线性Julia建模和用于参数优化的解决方案工具将SBML接口
SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization
论文作者
论文摘要
动机:从实验观察中估算模型参数是系统生物学的关键挑战之一,在计算上可能非常昂贵。虽然最近开发了朱莉娅编程语言作为科学计算的高级和高性能语言,但系统生物学家才开始意识到其潜力。例如,我们最近使用朱莉娅(Julia)将微生物群落模型的优化时间减少了140倍。为了促进系统生物学群落访问用于此优化的有效的非线性求解器,我们开发了SBML2Julia。 SBML2Julia将SBML和TSV文件(PETAB格式)中指定的优化问题转化为朱莉娅进行数学编程(跳跃),执行优化并以表格格式返回结果。 可用性和实施:SBML2Julia可根据MIT许可免费获得。它带有命令行接口和Python API。在内部,SBML2Julia将Julia LTS发行v1.0.5称为优化。可以从Docker Hub(https://hub.docker.com/repository/docker/docker/paulflang/sbml2julia)中取出所有必要的依赖项。源代码和文档可在https://github.com/paulflang/sbml2julia上找到。
Motivation: Estimating model parameters from experimental observations is one of the key challenges in systems biology and can be computationally very expensive. While the Julia programming language was recently developed as a high-level and high-performance language for scientific computing, systems biologists have only started to realise its potential. For instance, we have recently used Julia to cut down the optimization time of a microbial community model by a factor of 140. To facilitate access of the systems biology community to the efficient nonlinear solvers used for this optimisation, we developed SBML2Julia. SBML2Julia translates optimisation problems specified in SBML and TSV files (PEtab format) into Julia for Mathematical Programming (JuMP), executes the optimization and returns the results in tabular format. Availability and implementation: SBML2Julia is freely available under the MIT license. It comes with a command line interface and Python API. Internally, SBML2Julia calls the Julia LTS release v1.0.5 for optimisation. All necessary dependencies can be pulled from Docker Hub (https://hub.docker.com/repository/docker/paulflang/sbml2julia). Source code and documentation are available at https://github.com/paulflang/SBML2Julia.