论文标题
检测条件神经序列产生的幻觉含量
Detecting Hallucinated Content in Conditional Neural Sequence Generation
论文作者
论文摘要
神经序列模型可以产生高度流利的句子,但是最近的研究还表明,它们也很容易幻觉输入支持的其他内容。这些流利但错误的输出的种类尤其有问题,因为用户不可能告诉他们的内容不正确。为了检测这些错误,我们提出了一项任务,以预测输出序列中的每个令牌是否幻觉(未包含在输入中),并为此任务收集新的手动注释评估集。我们还介绍了一种学习方法,该方法使用预审计的语言模型对综合数据进行了微调,其中包括在机器翻译(MT)上自动插入幻觉实验,而抽象性摘要表明,我们所提出的方法始终在所有基准标准数据集上均超过强大的基础线。我们进一步演示了如何使用令牌级幻觉标签来定义低资源MT中目标序列的细粒损失,并比强基线方法实现显着改善。我们还将我们的方法应用于MT的单词级质量估计,并在受监督和无监督的设置中显示出其有效性。 https://github.com/violet-zct/faireq-detect-hallucinitation可用的代码和数据。
Neural sequence models can generate highly fluent sentences, but recent studies have also shown that they are also prone to hallucinate additional content not supported by the input. These variety of fluent but wrong outputs are particularly problematic, as it will not be possible for users to tell they are being presented incorrect content. To detect these errors, we propose a task to predict whether each token in the output sequence is hallucinated (not contained in the input) and collect new manually annotated evaluation sets for this task. We also introduce a method for learning to detect hallucinations using pretrained language models fine tuned on synthetic data that includes automatically inserted hallucinations Experiments on machine translation (MT) and abstractive summarization demonstrate that our proposed approach consistently outperforms strong baselines on all benchmark datasets. We further demonstrate how to use the token-level hallucination labels to define a fine-grained loss over the target sequence in low-resource MT and achieve significant improvements over strong baseline methods. We also apply our method to word-level quality estimation for MT and show its effectiveness in both supervised and unsupervised settings. Codes and data available at https://github.com/violet-zct/fairseq-detect-hallucination.