论文标题
Klein-Gordon方程的天然高衍生物概括
Natural Higher-Derivatives Generalization for the Klein-Gordon Equation
论文作者
论文摘要
我们提出了一个自然的高阶部分偏微分方程的家族,概括了二阶Klein-gordon方程。我们通过标量场的广义动作来表征相关的模型,其中包含更高的术语。讨论了通过考虑D'Alembertian操作员的任意高阶功率获得的极限,从而讨论了形式的无限级偏微分方程。使用D'Alembertian差异操作员的指数构建通用模型。明确计算了规范的能量张量密度和场传播器。我们认为同质和非均匀情况。在所有情况下都获得了经典解决方案。
We propose a natural family of higher-order partial differential equations generalizing the second-order Klein-Gordon equation. We characterize the associated model by means of a generalized action for a scalar field, containing higher-derivative terms. The limit obtained by considering arbitrarily higher-order powers of the d'Alembertian operator leading to a formal infinite-order partial differential equation is discussed. The general model is constructed using the exponential of the d'Alembertian differential operator. The canonical energy-momentum tensor densities and field propagators are explicitly computed. We consider both homogeneous and non-homogeneous situations. The classical solutions are obtained for all cases.