论文标题
Branchy-gnn:用于高效点云处理的设备边缘共同推导框架
Branchy-GNN: a Device-Edge Co-Inference Framework for Efficient Point Cloud Processing
论文作者
论文摘要
三维(3D)数据采集设备的最新进步刺激了依赖点云数据处理的新应用。但是,处理大量的点云数据为资源受限的移动设备带来了重大的工作量,禁止释放其全部潜力。建立在设备边缘共同推导的新兴范式上,其中边缘设备将中间功能提取并传输到边缘服务器以进行进一步处理,我们建议通过利用边缘计算平台利用基于有效的图形神经网络(GNN)点云处理。为了降低设备计算成本,分支机构添加了分支网络,以提早退出。此外,它采用基于学习的联合源通道编码(JSCC)进行中间功能压缩,以减少开销的通信。我们的实验结果表明,与多种基准方法相比,提出的枝型gnnn可以确保显着的潜伏期减小。
The recent advancements of three-dimensional (3D) data acquisition devices have spurred a new breed of applications that rely on point cloud data processing. However, processing a large volume of point cloud data brings a significant workload on resource-constrained mobile devices, prohibiting from unleashing their full potentials. Built upon the emerging paradigm of device-edge co-inference, where an edge device extracts and transmits the intermediate feature to an edge server for further processing, we propose Branchy-GNN for efficient graph neural network (GNN) based point cloud processing by leveraging edge computing platforms. In order to reduce the on-device computational cost, the Branchy-GNN adds branch networks for early exiting. Besides, it employs learning-based joint source-channel coding (JSCC) for the intermediate feature compression to reduce the communication overhead. Our experimental results demonstrate that the proposed Branchy-GNN secures a significant latency reduction compared with several benchmark methods.