论文标题

代数和热带奇异性超曲面的枚举

Enumeration of algebraic and tropical singular hypersurfaces

论文作者

Sinichkin, Uriel

论文摘要

我们开发了Mikhalkin的晶格路径算法的版本,用于用于任意程度和维度的投射性超曲面,该版本列举了通过适当的点的奇异热带突出表面。通过证明对应定理与晶格路径算法相结合,我们构建了一个$δ$尺寸线性$ d $ $ d $真实的超曲面,其中包含$ \ frac {1} {δ!} {Δ!}(γ_nd^n)通过递归公式。这与数字$ \ frac {1} {δ!} \ left(((n+1)(d-1)(d-1)^n \ right)^δ+o \ left(d^{n(δ-Δ-1)}^$δ$δ$δ$Δ$Δ$Δ$Δ$Δ$δ$δ$δ$δ。在$δ= 1 $的情况下,我们给出了一个更好的主词。

We develop a version of Mikhalkin's lattice path algorithm for projective hypersurfaces of arbitrary degree and dimension, which enumerates singular tropical hypersurfaces passing through appropriate configuration of points. By proving a correspondence theorem combined with the lattice path algorithm, we construct a $δ$ dimensional linear space of degree $ d $ real hypersurfaces containing $\frac{1}{δ!} (γ_nd^n)^δ+ O(d^{nδ-1})$ hypersurfaces with $ δ$ real nodes, where $ γ_n $ are positive and given by a recursive formula. This is asymptotically comparable to the number $ \frac{1}{δ!} \left( (n+1)(d-1)^n \right)^δ+O\left(d^{n(δ-1)} \right) $ of complex hypersurfaces having $ δ$ nodes in a $ δ$ dimensional linear space. In the case $ δ=1 $ we give a slightly better leading term.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源