论文标题

在带有非符号温度温度曲线的BousSinesQ方程式上

On the Boussinesq equations with non-monotone temperature profiles

论文作者

Zillinger, Christian

论文摘要

在本文中,我们考虑了二维Boussinesq方程的渐近稳定性,其部分耗散在COUETTE流量和温度曲线的组合$ t(y)$的组合近。作为第一个主要结果,我们表明,如果$ t'$最多是$ν^{1/3} $,则在适当的规范中,则只有垂直散发速度而不是温度稳定的线性化boussinesq方程。因此,在这种线性化情况下,混合增强的耗散可以抑制雷利 - 贝纳德的不稳定性。我们进一步表明,这些结果扩展到温度和速度垂直耗散的(强制)非线性方程。

In this article we consider the asymptotic stability of the two-dimensional Boussinesq equations with partial dissipation near a combination of Couette flow and temperature profiles $T(y)$. As a first main result we show that if $T'$ is of size at most $ν^{1/3}$ in a suitable norm, then the linearized Boussinesq equations with only vertical dissipation of the velocity but not of the temperature are stable. Thus, mixing enhanced dissipation can suppress Rayleigh-Bénard instability in this linearized case. We further show that these results extend to the (forced) nonlinear equations with vertical dissipation in both temperature and velocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源