论文标题
金牛座(Alma-Dot)中磁盘流源源的Alma化学调查。 iv。硫代甲醛(h $ _2 $ cs)的原星盘:空间分布和绑定能
ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). IV. Thioformaldehyde (H$_2$CS) in protoplanetary disks: spatial distributions and binding energies
论文作者
论文摘要
目的:追踪原星磁盘中H2C的径向和垂直空间分布,H2C是S含S-Barewer化学的关键物种。为了根据H2C的结合能分析观察到的分布,以讨论热解吸在富集气盘分量中的作用。方法:在金牛座恒星形成区域(ALMA-DOT)中的Alma化学调查中,我们在40 AU量表上观察了五个具有O-H2C(7_1,6-6-6_1,5)线的I类或早期II类源。我们首次使用量子机械计算估算了H2C的结合能(BES),以进行延长,周期性的晶体冰。结果:我们在HL TAU和IRAS04302+2247磁盘的两个旋转分子环中成像H2C。外部半径约为140 au(HL TAU)和115 AU(IRAS 04302+2247)。 IRAS 04302 +2247的边缘几何形状显示,赤道平面的H2CS发射峰在60-115 au的半径上,z = +-50 au。列密度约为10^14 cm^-2。对于hl tau,我们首次得出了protoplanetary磁盘中的[h2cs]/[h]丰度(大约10^-14)。计算为扩展结晶冰和无定形冰计算的H2C的BES,分别为4258 K和3000-4600 K,这意味着粉尘温度大于50-80 K的热蒸发。结论:H2CS跟踪所谓的温暖分子层,先前使用CS和H2CO采样了所谓的温暖分子层。硫代甲醛的峰值比H2CO和CS更接近原恒星,这可能是由于观察到的7_1,6-6-6_1,5线(60 K)的相对较高的兴奋水平。 H2CS BES表示,热解剂在薄的,AU大小的内部和/或上盘层中占主导地位,表明由于非热过程而导致的观察到的H2CS发射至半径大于100 au的H2C可能会注入气体中。
Aims: To trace the radial and vertical spatial distribution of H2CS, a key species of the S-bearing chemistry, in protoplanetary disks. To analyse the observed distributions in light of the H2CS binding energy, in order to discuss the role of thermal desorption in enriching the gas disk component. Methods: In the context of the ALMA chemical survey of Disk-Outflow sources in the Taurus star forming region (ALMA-DOT), we observed five Class I or early Class II sources with the o-H2CS(7_1,6-6_1,5) line on a 40 au scale. We estimated the binding energy (BEs) of H2CS using quantum mechanical calculations, for the first time, for an extended, periodic, crystalline ice. Results: We imaged H2CS in two rotating molecular rings in the HL Tau and IRAS04302+2247 disks. The outer radii are about 140 au (HL Tau), and 115 au (IRAS 04302+2247). The edge-on geometry of IRAS 04302+2247 reveals that H2CS emission peaks, at radii of 60-115 au, at z = +- 50 au from the equatorial plane. The column densities are about 10^14 cm^-2. For HL Tau, we derive, for the first time, the [H2CS]/[H] abundance in a protoplanetary disk (about 10^-14). The BEs of H2CS computed for extended crystalline ice and amorphous ices is 4258 K and 3000-4600 K, respectively, implying a thermal evaporation where dust temperature is larger than 50-80 K. Conclusions: H2CS traces the so-called warm molecular layer, a region previously sampled using CS, and H2CO. Thioformaldehyde peaks closer to the protostar than H2CO and CS, plausibly due to the relatively high-excitation level of observed 7_1,6-6_1,5 line (60 K). The H2CS BEs implies that thermal desorption dominates in thin, au-sized, inner and/or upper disk layers, indicating that the observed H2CS emitting up to radii larger than 100 au is likely injected in the gas due to non-thermal processes.