论文标题

统计推断的浓度不平等

Concentration Inequalities for Statistical Inference

论文作者

Zhang, Huiming, Chen, Song Xi

论文摘要

本文综述了浓度不平等的综述,这些不平等广泛用于数学统计的非反应分析中,从无分布到分布依赖性,从高斯次级,次指数,亚伽玛和亚及以下随机变量以及从平均值到最大浓度。这篇综述为这些设置提供了一些新的新结果。鉴于高维数据和推断的日益普及,还提供了高维线性和泊松回归的背景下的结果。我们旨在说明具有已知常数的集中度不平等,并用更清晰的常数提高现有界限。

This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data and inference, results in the context of high-dimensional linear and Poisson regressions are also provided. We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源