论文标题
通过相空间操纵对不稳定的非线性波的稳定
Stabilization of unsteady nonlinear waves by phase space manipulation
论文作者
论文摘要
我们引入了一种普遍适用于单向非线性相干波的动态稳定方案。通过突然更改波形特性,可以稳定受调节不稳定性的波包的呼吸,这可以稳定,这是由于突然膨胀的同质轨道及其落入椭圆固定点(中心)的结果。我们将此概念应用于非线性Schrödinger方程框架,并表明Akhmedieev的呼吸膜是Fermi-Pasta-pasta-ulam-tsingou复发和极端波事件的核心,可以通过单个外部物理参数的合适变化来将其冷冻成稳定的周期性周期性(DNOIDAL)波。我们在特定的表面重力水波中,在波浪水槽中随着突然的测深量法变化而在波浪水槽中传播的特定情况下,我们在实验上证明了这种通用方法。我们的结果突出了地形和波导特性对非线性波的寿命的影响,并确认了控制它们的可能性。
We introduce a dynamic stabilization scheme universally applicable to unidirectional nonlinear coherent waves. By abruptly changing the waveguiding properties, the breathing of wave packets subject to modulation instability can be stabilized as a result of the abrupt expansion a homoclinic orbit and its fall into an elliptic fixed point (center). We apply this concept to the nonlinear Schrödinger equation framework and show that an Akhmediev breather envelope, which is at the core of Fermi-Pasta-Ulam-Tsingou recurrence and extreme wave events, can be frozen into a steady periodic (dnoidal) wave by a suitable variation of a single external physical parameter. We experimentally demonstrate this general approach in the particular case of surface gravity water waves propagating in a wave flume with an abrupt bathymetry change. Our results highlight the influence of topography and waveguide properties on the lifetime of nonlinear waves and confirm the possibility to control them.