论文标题

Supernova 2018ZD的电子捕获起源

The electron-capture origin of supernova 2018zd

论文作者

Hiramatsu, Daichi, Howell, D. Andrew, Van Dyk, Schuyler D., Goldberg, Jared A., Maeda, Keiichi, Moriya, Takashi J., Tominaga, Nozomu, Nomoto, Ken'ichi, Hosseinzadeh, Griffin, Arcavi, Iair, McCully, Curtis, Burke, Jamison, Bostroem, K. Azalee, Valenti, Stefano, Dong, Yize, Brown, Peter J., Andrews, Jennifer E., Bilinski, Christopher, Williams, G. Grant, Smith, Paul S., Smith, Nathan, Sand, David J., Anand, Gagandeep S., Xu, Chengyuan, Filippenko, Alexei V., Bersten, Melina C., Folatelli, Gastón, Kelly, Patrick L., Noguchi, Toshihide, Itagaki, Koichi

论文摘要

在白色矮人形成和铁核偏曲超新星之间的过渡质量范围($ \ sim $ 8-10太阳能)中,恒星有望产生电子捕获超新星。从理论上讲,这些祖细胞被认为是具有退化的O+NE+mg核的超轴向巨型分支星星,并且电子捕获在NE和MG Noclei上应引发核心塌陷。但是,从电子捕获起源中明确鉴定出任何超新星,部分原因是理论预测的不确定性。在这里,我们提出了六个电子捕获超新星的指标,并表明Supernova 2018ZD是唯一已知的超新星,具有强大证据或与所有六个相一致的超新星:祖细胞鉴定,偶然物质,化学组成,爆炸能,光曲线和核合成。对于Supernova 2018ZD,我们根据前爆炸图像中的微弱候选者以及早期的紫外线颜色和闪光光谱揭示的化学富集的室外材料来推断一个超级轴向巨型巨型分支祖细胞。可以用在电子捕获超新星中产生的低爆炸能量和富含中子的核合成的爆炸能量和富含中子的核合成,可以解释光曲线形态和肾小管发射线。这种识别提供了对复杂的恒星进化,超新星物理学,宇宙核合成和残余种群的见解。

In the transitional mass range ($\sim$ 8-10 solar masses) between white dwarf formation and iron core-collapse supernovae, stars are expected to produce an electron-capture supernova. Theoretically, these progenitors are thought to be super-asymptotic giant branch stars with a degenerate O+Ne+Mg core, and electron capture onto Ne and Mg nuclei should initiate core collapse. However, no supernovae have unequivocally been identified from an electron-capture origin, partly because of uncertainty in theoretical predictions. Here we present six indicators of electron-capture supernovae and show that supernova 2018zd is the only known supernova having strong evidence for or consistent with all six: progenitor identification, circumstellar material, chemical composition, explosion energy, light curve, and nucleosynthesis. For supernova 2018zd, we infer a super-asymptotic giant branch progenitor based on the faint candidate in the pre-explosion images and the chemically-enriched circumstellar material revealed by the early ultraviolet colours and flash spectroscopy. The light-curve morphology and nebular emission lines can be explained with the low explosion energy and neutron-rich nucleosynthesis produced in an electron-capture supernova. This identification provides insights into the complex stellar evolution, supernova physics, cosmic nucleosynthesis, and remnant populations in the transitional mass range.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源