论文标题

NAS-FAS:静态动态中央差异网络搜索面部反动体

NAS-FAS: Static-Dynamic Central Difference Network Search for Face Anti-Spoofing

论文作者

Yu, Zitong, Wan, Jun, Qin, Yunxiao, Li, Xiaobai, Li, Stan Z., Zhao, Guoying

论文摘要

面部抗刺激(FAS)在确保面部识别系统中起着至关重要的作用。现有方法在很大程度上依赖于专家设计的网络,这可能会导致FAS任务的次级解决方案。在这里,我们提出了基于神经体系结构搜索(NAS)(NAS-FAS)的第一个FAS方法,以发现良好的任务感知网络。与以前的NAS不同,主要专注于在通用对象分类中制定有效的搜索策略,我们更加关注研究FAS任务的搜索空间。将NAS用于FAS的挑战分为两个折:在1)在看不见的条件下特定的采集条件可能表现较差,而2)特定的欺骗攻击可能对看不见的攻击概括不良。为了克服这两个问题,我们开发了一个新颖的搜索空间,该搜索空间包括中央差异卷积和集合运营商。此外,利用有效的静态动态表示,以完全挖掘FAS感知的时空差异。此外,我们提出了域/类型感知的meta-nas,它利用跨域/类型知识进行健壮的搜索。最后,为了评估交叉数据集和未知攻击类型的NAS可传递性,我们发布了一个大尺度的3D掩码数据集,即Casia-Surf 3DMask,用于支持新的“交叉数据库交叉类型”测试协议。实验表明,所提出的NAS-FAS通过四个测试协议在9个FAS基准数据集上实现了最先进的性能。

Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. Existing methods heavily rely on the expert-designed networks, which may lead to a sub-optimal solution for FAS task. Here we propose the first FAS method based on neural architecture search (NAS), called NAS-FAS, to discover the well-suited task-aware networks. Unlike previous NAS works mainly focus on developing efficient search strategies in generic object classification, we pay more attention to study the search spaces for FAS task. The challenges of utilizing NAS for FAS are in two folds: the networks searched on 1) a specific acquisition condition might perform poorly in unseen conditions, and 2) particular spoofing attacks might generalize badly for unseen attacks. To overcome these two issues, we develop a novel search space consisting of central difference convolution and pooling operators. Moreover, an efficient static-dynamic representation is exploited for fully mining the FAS-aware spatio-temporal discrepancy. Besides, we propose Domain/Type-aware Meta-NAS, which leverages cross-domain/type knowledge for robust searching. Finally, in order to evaluate the NAS transferability for cross datasets and unknown attack types, we release a large-scale 3D mask dataset, namely CASIA-SURF 3DMask, for supporting the new 'cross-dataset cross-type' testing protocol. Experiments demonstrate that the proposed NAS-FAS achieves state-of-the-art performance on nine FAS benchmark datasets with four testing protocols.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源