论文标题

除了对多核心缓存策略的最坏情况分析

Beyond Worst-case Analysis of Multicore Caching Strategies

论文作者

Kamali, Shahin, Xu, Helen

论文摘要

每个具有多个内核的处理器都需要实现缓存替换算法。先前的工作表明,包括最少使用(LRU)在内的大量在线算法的竞争比率随输入的时间长度而增长。此外,即使是诸如最远的直觉之类的离线算法,单核缓存中的最佳算法也无法在多核心设置中竞争。这些负面的结果激发了通过替代分析措施对多项缓存算法进行更深入的比较。具体而言,对手适应在线算法的力量表明,需要直接比较在线算法。 在本文中,我们介绍了循环分析,这是Angelopoulos和Schweitzer引入的界限分析的概括[JACM'13]。循环分析捕获了徒分析的优势,同时提供了灵活性,从而使其对于比较在线问题的算法更有用。特别是,我们采取的第一步超出了最坏情况分析,以分析多核心缓存算法。我们使用循环分析来建立多项缓存算法之间的关系,包括LRU在参考局部存在的情况下在所有其他多层缓存算法上的优势。

Every processor with multiple cores sharing a cache needs to implement a cache-replacement algorithm. Previous work demonstrated that the competitive ratio of a large class of online algorithms, including Least-Recently-Used (LRU), grows with the length of the input. Furthermore, even offline algorithms like Furthest-In-Future, the optimal algorithm in single-core caching, cannot compete in the multicore setting. These negative results motivate a more in-depth comparison of multicore caching algorithms via alternative analysis measures. Specifically, the power of the adversary to adapt to online algorithms suggests the need for a direct comparison of online algorithms to each other. In this paper, we introduce cyclic analysis, a generalization of bijective analysis introduced by Angelopoulos and Schweitzer [JACM'13]. Cyclic analysis captures the advantages of bijective analysis while offering flexibility that makes it more useful for comparing algorithms for a variety online problems. In particular, we take the first steps beyond worst-case analysis for analysis of multicore caching algorithms. We use cyclic analysis to establish relationships between multicore caching algorithms, including the advantage of LRU over all other multicore caching algorithms in the presence of locality of reference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源