论文标题
激发混乱的征征的简周期轨道方法
The short periodic orbit method for excited chaotic eigenfunctions
论文作者
论文摘要
在本文中[发表于物理学。 Rev. E 102,042210(2020)],提出了一种用于计算任意能量窗口中激发混沌征函数的新方法。我们证明了使用在经典混乱系统中使用不稳定的周期性轨道上定位在不稳定周期性轨道上的波形作为此任务的有效基础的可行性。所需的局部波函数的数量仅为比率t h /t e的顺序,而海森堡时间和ehrenfest时间。作为例证,我们为与混沌动力学的二维四维振荡器提供了令人信服的结果。
In this paper [published in Phys. Rev. E 102, 042210 (2020)], a new method for the calculation of excited chaotic eigenfunctions in arbitrary energy windows is presented. We demonstrate the feasibility of using wavefunctions localized on unstable periodic orbits as efficient basis sets for this task in classically chaotic systems. The number of required localized wavefunctions is only of the order of the ratio t H /t E , with t H the Heisenberg time and t E the Ehrenfest time. As an illustration, we present convincing results for a coupled two-dimensional quartic oscillator with chaotic dynamics.