论文标题
在Al(a)ds $ _n $ spaceTimes中收取代数
Charge Algebra in Al(A)dS$_n$ Spacetimes
论文作者
论文摘要
通用渐近的重力电荷代数(a)ds spaceTimes以$ n $尺寸得出。该分析是在Starobinsky/Fefferman-Graham仪表中进行的,而没有假设与整形紧凑的最小偏差相比,还没有任何进一步的边界条件。特别是,边界结构可以波动并扮演源在边界处产生一定符号通量的作用。使用全息重新归一化程序,从符号结构中删除了差异,从而导致有限的表达。与边界差异相关的电荷是普通的,不可变化的,不可融合的且不保守的,而与边界Weyl reclescalings相关的电荷仅在奇数上仅在奇数中呈现在奇数中,这是由于双重理论中存在Weyl异常而导致的。电荷代数在奇数尺寸上表现出与场相关的$ 2 $ cocycle。当一般框架仅限于具有差异边界条件的三维渐近广告空间时,$ 2 $ cocycle将减少到棕色henneaux Central Extension。该分析还指定为渐近的局部(a)DS空间中的泄漏边界条件,导致$λ$ -BMS渐近对称组。在平坦的限制中,后者以$ n $尺寸签订了BMS组。
The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in $n$ dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent $2$-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the $2$-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the $Λ$-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in $n$ dimensions.