论文标题

测试(无限)许多零限制

Testing (Infinitely) Many Zero Restrictions

论文作者

Hill, Jonathan B.

论文摘要

本文提出了一次测试(可能无限)在极端估计框架中的零参数限制的最大测试。测试统计量是通过一个基于从低维参数空间映射的许多经验损失函数估算一个关键参数来形成的,并从这些单独估计的参数中选择最大的绝对值。比较的参数损失确定感兴趣的原始参数是零。估计固定的低维子参数可确保更高的估计器准确性,不需要稀疏性假设,并且仅在一系列加权估计器中使用最大的估计值,从而降低了测试统计复杂性和估计误差,从而确保了较尖锐的大小和实践中的功率更大。权重允许标准化以控制估计器分散。在非线性参数回归框架中,我们为P值计算提供了参数野生引导程序,而无需直接需要最大统计的极限分布。一个模拟实验显示,最大测试主导了常规的自举测试。

This paper proposes a max-test for testing (possibly infinitely) many zero parameter restrictions in an extremum estimation framework. The test statistic is formed by estimating key parameters one at a time based on many empirical loss functions that map from a low dimension parameter space, and choosing the largest in absolute value from these individually estimated parameters. The parsimoniously parametrized loss identify whether the original parameter of interest is or is not zero. Estimating fixed low dimension sub-parameters ensures greater estimator accuracy, does not require a sparsity assumption, and using only the largest in a sequence of weighted estimators reduces test statistic complexity and therefore estimation error, ensuring sharper size and greater power in practice. Weights allow for standardization in order to control for estimator dispersion. In a nonlinear parametric regression framework we provide a parametric wild bootstrap for p-value computation without directly requiring the max-statistic's limit distribution. A simulation experiment shows the max-test dominates a conventional bootstrapped test.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源