论文标题
通过理论家与观察者来衡量的核对星系群集形状
Reconciling galaxy cluster shapes, measured by theorists vs observers
论文作者
论文摘要
如果经过正确的校准,则可以使用星系簇的形状来研究许多物理过程:从恒星形成的反馈和淬火到暗物质的性质。理论家经常使用模拟颗粒的惯性矩来测量形状。相反,我们创建了22个最大的($ \ sim10^{14.7} \,m_ \ odot $)的模拟(光学,X射线,坚固和弱透镜)观察结果。我们发现可观察的形状度量更圆。即使将惯性矩投射到2D并在匹配的半径上进行评估,它们也将椭圆度高出56 \%(与可观察到的强透镜相比)和430 \%(与可观察到的弱透镜相比)。因此,我们提出了可匹配的数量并使用来自{\ emph Hubble Space望远镜}和{\ Emph Chandra X射线观测}的八个松弛簇的观测值进行测试。我们还向社区发布了HST数据减少和镜头分析软件。在实际簇中,所有半径在所有半径上都密切相关。在模拟群集中,内部($ <r _ {\ mathrm {vir}}/20 $)区域的椭圆度被脱钩:例如,中央群集星系的较大未对准。这可能表明过度有效地实施了来自主动银河核的反馈。对群集形状随着半径的函数的未来开发将需要更好地理解核心的男性过程。在任何规模上对形状的开发都需要对模拟进行校准,以延长模拟观察。
If properly calibrated, the shapes of galaxy clusters can be used to investigate many physical processes: from feedback and quenching of star formation, to the nature of dark matter. Theorists frequently measure shapes using moments of inertia of simulated particles'. We instead create mock (optical, X-ray, strong- and weak-lensing) observations of the twenty-two most massive ($\sim10^{14.7}\,M_\odot$) relaxed clusters in the BAHAMAS simulations. We find that observable measures of shape are rounder. Even when moments of inertia are projected into 2D and evaluated at matched radius, they overestimate ellipticity by 56\% (compared to observable strong lensing) and 430\% (compared to observable weak lensing). Therefore, we propose matchable quantities and test them using observations of eight relaxed clusters from the {\emph Hubble Space Telescope} and {\emph Chandra X-Ray Observatory}. We also release our HST data reduction and lensing analysis software to the community. In real clusters, the ellipticity and orientation angle at all radii are strongly correlated. In simulated clusters, the ellipticity of inner ($<r_{\mathrm{vir}}/20$) regions becomes decoupled: for example with greater misalignment of the central cluster galaxy. This may indicate overly efficient implementation of feedback from active galactic nuclei. Future exploitation of cluster shapes as a function of radii will require better understanding of core baryonic processes. Exploitation of shapes on any scale will require calibration on simulations extended all the way to mock observations.