论文标题

贝叶斯搜索引力波爆发在脉冲星时阵列数据中

Bayesian search for gravitational wave bursts in pulsar timing array data

论文作者

Bécsy, Bence, Cornish, Neil J.

论文摘要

脉冲星定时阵列探索的纳米赫兹频带为引力波信号提供了独特的发现空间。除了来自预期来源的信号(例如超级黑洞二进制文件的信号)外,一些以前未经想象的来源还可能以未知的形态散发瞬时引力波(又称爆发)。目前未在此频带中搜索未建模的瞬变,它们需要与当前使用的技术不同的技术。这种引力波爆发的可能来源是超级质量黑洞,宇宙弦尖和扭结或其他尚未达到的现象的抛物线。在本文中,我们介绍了Bayeshopperburst,这是一种贝叶斯搜索算法,能够通过将相干和不一致的瞬变建模为Morlet-Gabor小波的总和来识别通用的引力波爆发。跨维的可逆跳跃马尔可夫链蒙特卡洛采样器用于选择最能描述数据的小波数。我们在各种模拟数据集上测试Bayeshopperburst,包括信号和噪声瞬变的不同组合。通过分析来自Nanograv 9年数据集的PULSAR B1855+09的数据来证明其在实际数据上运行的能力。基于模拟数据集,类似于Nanograv 12。5年的数据发布,我们预测,在最敏感的时频位置,我们将能够以较高的重力幅度探测引力波爆发,而根平方的幅度高于$ \ sim 5 \ sim 5 \ sim 5 \ sim times 10^{ - 11}}} $ hz $^$^{ - 1/2} $,$ _ $ _ $ \ $ \ y $以100 MPC的基准距离发射在GWS中。

The nanohertz frequency band explored by pulsar timing arrays provides a unique discovery space for gravitational wave signals. In addition to signals from anticipated sources, such as those from supermassive black hole binaries, some previously unimagined sources may emit transient gravitational waves (a.k.a. bursts) with unknown morphology. Unmodeled transients are not currently searched for in this frequency band, and they require different techniques from those currently employed. Possible sources of such gravitational wave bursts in the nanohertz regime are parabolic encounters of supermassive black holes, cosmic string cusps and kinks, or other, as-yet-unknown phenomena. In this paper we present BayesHopperBurst, a Bayesian search algorithm capable of identifying generic gravitational wave bursts by modeling both coherent and incoherent transients as a sum of Morlet-Gabor wavelets. A trans-dimensional Reversible Jump Markov Chain Monte Carlo sampler is used to select the number of wavelets best describing the data. We test BayesHopperBurst on various simulated datasets including different combinations of signals and noise transients. Its capability to run on real data is demonstrated by analyzing data of the pulsar B1855+09 from the NANOGrav 9-year dataset. Based on a simulated dataset resembling the NANOGrav 12.5-year data release, we predict that at our most sensitive time-frequency location we will be able to probe gravitational wave bursts with a root-sum-squared amplitude higher than $\sim 5 \times 10^{-11}$ Hz$^{-1/2}$, which corresponds to $\sim 40 M_{\odot} c^2$ emitted in GWs at a fiducial distance of 100 Mpc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源