论文标题
2D金属的地图集到SIC:填充控制的间隙条件和合金规则
Atlas of 2D metals epitaxial to SiC: filling-controlled gapping conditions and alloying rules
论文作者
论文摘要
实现空气稳定的2D金属在SIC上外延并由石墨烯盖住,产生了2D金属和合金的巨大化学空间,可以扩大2D金属与石墨烯和Niobium/Niobium/tantalum chalcogenides所知的固态激发的种类。我们通过第一原理进行高通量计算调查,以预测元素嵌入石墨烯/SIC时元素周期表中所有金属的结构和稳定性。我们的结果不仅与迄今为止探索的所有实验已知的金属/SIC结构一致,而且还揭示了与金属粘性能和金属 - 硅粘结相关的显着趋势。对于特殊的金属组,一个小带隙打开,依靠适当的电子填充和底物引起的对称性破裂。通过这种盖化稳定,我们得出了2D金属独有的合金规则。
The realization of air-stable 2D metals epitaxial to SiC and capped by graphene creates a potentially immense chemical space of 2D metals and alloys that could expand the variety of solid-state excitations unique to 2D metals beyond what is known for graphene and niobium/tantalum chalcogenides. We perform a high-throughput computational survey from first-principles predicting the structures and stabilities of all metals in the periodic table when they intercalate graphene/SiC. Our results not only agrees with all experimentally known metal/SiC structures explored so far, but also reveals conspicuous trends related to metal cohesive energies and metal-silicon bonding. For special groups of metals, a small bandgap opens, relying on appropriate electron filling and substrate-induced symmetry breaking. From this gapping stabilization, we derive alloying rules unique to 2D metals.