论文标题
通过抑制纹理来学习转移学习的视觉表示
Learning Visual Representations for Transfer Learning by Suppressing Texture
论文作者
论文摘要
最近的文献表明,从CNN的监督培训获得的特征可能会过分强调纹理,而不是编码高级信息。特别是在自我监督的学习中,纹理作为低级提示可能会提供捷径,以防止网络学习更高级别的表示。为了解决这些问题,我们建议使用基于各向异性扩散的经典方法,以使用具有抑制纹理的图像来增强训练。这种简单的方法有助于保留重要的边缘信息并同时抑制纹理。我们从经验上表明,我们的方法在对象检测和图像分类方面实现了最新的结果,并在监督或自我监督的学习任务(例如Mocov2和Jigsaw)中使用了八个不同的数据集。我们的方法对于转移学习任务特别有效,我们观察到五个标准转移学习数据集的性能提高了。 Sketch-Imagenet数据集,DTD数据集和带有显着性图的其他视觉分析的大量改进(最高11.49 \%)表明,我们的方法有助于学习更好地传输的更好表示。
Recent literature has shown that features obtained from supervised training of CNNs may over-emphasize texture rather than encoding high-level information. In self-supervised learning in particular, texture as a low-level cue may provide shortcuts that prevent the network from learning higher level representations. To address these problems we propose to use classic methods based on anisotropic diffusion to augment training using images with suppressed texture. This simple method helps retain important edge information and suppress texture at the same time. We empirically show that our method achieves state-of-the-art results on object detection and image classification with eight diverse datasets in either supervised or self-supervised learning tasks such as MoCoV2 and Jigsaw. Our method is particularly effective for transfer learning tasks and we observed improved performance on five standard transfer learning datasets. The large improvements (up to 11.49\%) on the Sketch-ImageNet dataset, DTD dataset and additional visual analyses with saliency maps suggest that our approach helps in learning better representations that better transfer.