论文标题

对在线学生评估的性别偏见的多景观分析

A Multi-aspect Analysis of Gender Bias on Online Student Evaluations

论文作者

Nikolakaki, Sofia Maria, Lai, Joseph, Terzi, Evimaria

论文摘要

机构广泛使用学生评估来评估教师的教学表现,但是潜在的趋势和偏见会影响他们的解释。利用我的教授的数据,我们进行了最大,最新的定量数据分析,以研究与学生回顾男性和女性教授表现的评估标准有关的问题。我们的分析涵盖了二十年(1999-2019)的数据,从而考虑到网站上的最新变化和学生的感知,并展示了与学生如何看待男女教授的教学风格和性格特征有关的有趣见解。我们还提出了第一个分析,该分析研究了性别偏见如何随着时间的流逝而变化并在空间上变化。我们认为,从社会学的角度来看,我们的结果很有趣,因为他们通过披露学生对不同性别的教授的看法和评估教授的方式来调查性别在高等教育中的作用。此外,我们认为,在考虑其教师评估中存在的可能偏见时,我们的发现对教育机构很有用。

Institutions widely use student evaluations to assess the faculty's teaching performance, but underlying trends and biases can influence their interpretation. Using data from Rate My Professors, we conduct the largest and most recent quantitative data analysis to study questions related to the evaluation criteria that students have when they review the performance of their male and female professors. Our analysis spans data from two decades (1999-2019), thus taking into account recent changes on the website and in the perception of students, and demonstrates interesting insights related to how students perceive the teaching style and personality traits of their male and female professors. We also present the first analysis that investigates how gender bias evolves over time and changes over space. We believe that our results are interesting from a sociological viewpoint, as they investigate the role of gender in higher education by disclosing how students perceive and evaluate professors of different genders. In addition, we believe that our findings can be useful to educational institutions when considering possible biases that exist in the evaluations of their faculty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源