论文标题
在辛格尔顿的拥堵游戏中具有抵御能力的勾结
On Singleton Congestion Games with Resilience Against Collusion
论文作者
论文摘要
我们研究了具有相同成本功能的Singleton拥堵游戏的子类,即每个代理商在她无法访问的资源子集中尝试从最少拥挤的资源中使用。我们的主要贡献是一种新颖的方法,用于证明存在平衡成果的存在,这些成果有弹性,这些结果有助于改善偏差:Singletons(Nash Equilibria)的$(i)$,大联盟(Pareto效率)的$(ii)$(II)$(II)$(pareto效率),以及相对于先前的copition Coalition Coalition Colatition Equilition Equalition Equalition EqualiLib(III)$(III)$。据我们所知,这是交通拥堵游戏中最强大的保证,这些保证有能力弹性地通过联盟改善偏差。
We study the subclass of singleton congestion games with identical and increasing cost functions, i.e., each agent tries to utilize from the least crowded resource in her accessible subset of resources. Our main contribution is a novel approach for proving the existence of equilibrium outcomes that are resilient to weakly improving deviations: $(i)$ by singletons (Nash equilibria), $(ii)$ by the grand coalition (Pareto efficiency), and $(iii)$ by coalitions with respect to an a priori given partition coalition structure (partition equilibria). To the best of our knowledge, this is the strongest existence guarantee in the literature of congestion games that is resilient to weakly improving deviations by coalitions.