论文标题
功能值足以容纳$ L_2 $ - APPROXIMATION:第二部分
Function values are enough for $L_2$-approximation: Part II
论文作者
论文摘要
在第一部分中,我们已经表明,对于$ L_2 $ - 对功能的函数对最差的案例设置中可分离的Hilbert空间的功能,如果函数值的线性算法几乎与任意线性算法一样强大,如果近似值数字是正方形的。也就是说,它们达到了相同的收敛速率。在此续集中,我们证明了可分离的Banach空间和其他类别的功能的结果。
In the first part we have shown that, for $L_2$-approximation of functions from a separable Hilbert space in the worst-case setting, linear algorithms based on function values are almost as powerful as arbitrary linear algorithms if the approximation numbers are square-summable. That is, they achieve the same polynomial rate of convergence. In this sequel, we prove a similar result for separable Banach spaces and other classes of functions.